
CMP 610b Lecture 2
F. Sigworth

Amplifiers and Feedback

In this lecture we consider some basic principles of electronics that are important for understanding
how voltage clamps and patch clamps work.

VOLTAGE DIVIDERS

We first consider the properties of two resistances in series.  These could be resistances like the
resistance of a microelectrode or of a cell membrane, or the electronic components called resistors,
which consist of an insulating cylinder on which a thin metal film is deposited to make a device with
a known resistance.  Suppose two resistances are arranged like

Va Vb

V

R1 R2

What is the voltage V in the center, if Va and Vb are imposed on the ends?  One way to solve this is
to notice that the current flowing through the resistors will be the voltage difference at the ends,
divided by the total reisistance,

I = 
Va–Vb
R1+R2

so, working from the left-hand end we have

V = Va – IR1

which after some algebra works out to

V = 
VaR2+VbR1

R1+R2
(1)

i.e. a weighted average of the voltages at the ends.  This is just like the result we had last time, where
we had a voltage V imposed on a microelectrode and the resting potential of a cell acting through the
cell's membrane resistance, which happend to be equal to the electrode resistance; the result was a
potential halfway between.

OPERATIONAL AMPLIFIERS

The key components in things like voltage clamps are little integrated circuits called operational
amplifiers.  They have five useful terminals coming out of them.  Two of them connect to power
supplies (typically +15 and –15 volts); two are inputs and one is an output terminal.  We make a
diagram of one like this (ignoring the power supply terminals which of course have to be hooked up
for things to work),
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Fig. 1

Here V+ and V– are the voltages on the non-inverting and inverting inputs, respectively, and Vo is
the output voltage.  A simple description of an operational amplifier is provided by the following
equations.

i+ = 0

i - = 0

dVo
dt  = α (V+ – V-). (2)

The first two equations say that no current flows into the two input terminals; the amplifer measures
voltages without taking any current (this is not strictly true, but is usually a good approximation!).
The third equation says that if any voltage difference exists between the input terminals, the output
voltage starts to change.  The constant α is usually a large number, on the order of 107/second.  Thus
even a small difference causes a rapid change in Vo.

INVERTING AMPLIFIERS

We will now hook up this operational amplifier in ways to make various sorts of useful devices.
First let us use it with two resistors like this:

Vin

R1

R2

+

_
Vo

Fig. 2

We have connected the non-inverting input to 'ground' (i.e. the point where we say the potential is
zero), apply an input signal Vin through R1 and have connected R2 as a 'feedback' resistor, because it
connects the output back to the input.  We can use equation (1) to compute what Vo is, given what
Vin is.

dVo
dt  = –α 

VinR2+VoR1
R1+R2

which can be rearranged to a standard form

(
R1+R2

αR1
) 

dVo
dt  + Vo = – 

R2
R1

 Vin (3)
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The term (R1+R2)/(αR1) is the time constant, and –(R2/R1)Vin is the final value, of the response of
this circuit to a sudden change in Vin.  For example if R1 = R2 then Vo will follow Vin, only it will be
inverted and it will be delayed slightly by a time constant of 2/α, something on the order of 0.1µs.  If
we made the ratio R2/R1 quite large, say by making R2 = 106Ω and R1 = 103Ω then we would have an
amplifier with a 'gain' of –1000.  The time constant would be roughly 1000/α, or about 100µs.

CURRENT TO VOLTAGE CONVERTER

Here is another way of thinking about the amplifiers we just discussed.  Because of the feedback
connection via R2, the amplifier always acts to keep the voltage at its inverting input at zero.
Transiently it will be nonzero when a sudden change is made, but it will return to zero with a short
time constant.  So we say that the inverting input is approximately at zero.

I in

R2

+

_
Vo

Fig. 3

Then if we inject a current Iin at the input, this current must be flowing through R2 (since no current
flows into the amplifier inputs).  For V– to be zero, we must then have

Vo ≈ –IinR2 (4)

Suppose Iin is created by a voltage applied through a resistor R1 (as in Fig. 2).  Then Iin ≈ Vin/R1 and
the final relationship is

Vo ≈ –Vin (R1/R2)

This is a restatement of eqn. (3), only where we have ignored the time dependence.

There are two interesting things to note about the circuit of Fig. 3 and its eqn. (4).
1.  It does not matter how Iin is created, the output voltage will always be proportional to it.  Thus we
can make amplifiers that sum multiple inputs by connecting multiple inputs through resistors to the
inverting input of the amplifier.
2.  You can connect things other than resistors to the input.  For example, suppose you connect a
capacitor:

Vin

R2

+

_
Vo

Since Iin will equal C(
dVin

dt ) this will act as a differentiator, with
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Vo ≈ –R2C(
dVin

dt ).

NON-INVERTING AMPLIFIERS

We consider one more amplifier configuration.  This is one where Vo has the same sign as Vin.  It is
made the following way:

Vin

R2

+
_

Vo

R1

The output voltage is given by

Vo ≈ 
R1+R2

R1
 Vin. (5)

You can convince yourself that this is true by remembering first that Vo changes whenever V– and
V+ are unequal, so the negative feedback will tend to keep them equal; and, second, making use of
the voltage divider formula (eqn. 1).

CAPACITANCE IN MICROELECTRODES

Now let me return to a topic I did not cover last time.  We considered the problem of trying to
control the membrane potential of a cell with a microelectrode.  Now we consider the problem of
measuring a potential with a microelectrode.  The problem has to do with the electrode resistance
and its capacitance.

Capacitance is the ratio of the amount of stored charge at an interface to the applied potential
difference.  For a capacitor made of two metal plates (or made of other conducting surfaces)

d
 the capacitance is

C = 
A
d  ε0 ε

Here A is the area of each plate, d is the spacing, ε0 is a physical constant that is about equal to
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10–13 farads per cm (i.e. 0.1 pF/cm), and ε is the dielectric constant, a property of the material
between the plates.

Now consider a microelectrode immersed in a bath solution.  The pipette is pulled from a glass
capillary with diameter ~1mm and wall thickness ~0.1 mm.  As the capillary is pulled the diameter
and the wall thickness decrease proportionately.  Therefore you can convince yourself that the
capacitance, per unit length of the pipette, between the conducting solution inside the pipette and
the solution outside does not vary as the pipette tapers down to a narrow tip.  The ratio A/d will be
constant, in our case, as

 
A
d  = 

π x 1mm x l
 0.1mm

for a length l.  The total capacitance works out (with ε ≈ 3) to be about 10 pF per cm of pipette length.
Is this a serious amount of capacitance?  Remember last time that the resistance in a pipette is
concentrated at the tip.  A good electrical model for a pipette that is sensing a voltage E is therefore

VelE
Re

Ce

where we have 'lumped' all of the electrode resistance at the tip, and place most of the capacitance of
the electrode at the other end.

We can write an equation for how the measured voltage Vel compares to the actual voltage E.  The
equation is

ReCe 
dVel
dt  + Vel = E.

This says that the response to a step change in E will be an exponential relaxation in Vel, with time
constant τ = ReCe.  A high-resistance electrode can have a resistance of 100 MΩ or more.  If Ce is 1 pF
this results in a time constant of 100µs or more.  Usually the electrode holder and the amplifier
contribute some more capacitance, perhaps several more picofarads, so that the time constant can be
relatively large.


