
CMP 610b Lecture 1
F. Sigworth

Microelectrodes
In this lecture we are concerned with two kinds of microelectrodes: 'conventional' microelectrodes
which are used to impale cells, and 'patch' electrodes that are sealed against the membrane of a cell.
Conventional microelectrodes are glass pipettes with very fine tips (usually < 1µm) and are typically
filled with a very concentrated salt solution (e.g. 3 M KCl).  Patch pipettes have somewhat larger tips
and are typically filled with physiological solutions (e.g. Ringer's, Tyrode's solutions).  They are
'electrodes' because a chlorided silver wire connects the aqueous solution to the metal conductors in
the electronic devices that measure potentials, pass currents, etc.

HOW DO CURRENTS FLOW THROUGH ELECTRODES?
1.  The Ag-AgCl junction

Let us consider the situation drawn below, where a stimulator causes a current to flow into the cell
through a microelectrode.  There is a Ag-AgCl wire in the microelectrode, and another in the bathing
solution (the bath electrode).
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The arrow of current says that net positive charge is moving in that direction.  (In the metal wires,
actually electrons are moving in the opposite direction).  At the wire in the microelectrode the
following reaction is taking place

Cl– + Ag → AgCl + e– (1)

This reaction is reversible, but it is mainly going in this direction.  At the bath electrode the opposite
reaction is the main one taking place,

 AgCl + e–  →  Cl– + Ag (2)

Notice two things about reaction (1).
a.  It will go faster when [Cl–] is large

b.  It will go faster if the metal electrode has a positive potential φe.

Meanwhile reaction (2) is independent of [Cl] but will go slower if φe is positive.

We can write down the relative rates of reactions (1) and (2) at one electrode, and what interests us at
the moment is the case in which the rates are equal, in which case no net current would be flowing.
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rate1
rate2

 = r0 [Cl–] e(φe- φsolution)e
0
/kT (3)

Now what would be the potential difference between the microelectrode (me) and bath electrode
(be), given asV = φme – φbe, if no cell is present and we require that no current be flowing?

bath 
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  If [Cl–] were the same at each of the silver wires, we would expect no potential difference by the
symmetry of the system.  More typically, the microelectrode is filled with 3 M KCl while the bath
electrode is immersed in physiological saline, say 150 mM NaCl.  Setting the ratio of the rates (eqn. 3)
to unity for each electrode we have

V = φme - φbe  = 
kT
e0

 ln (
[Cl]be
[Cl]me

) (4)

So for the concentrations [Cl]be = 0.1M and [Cl]me = 3M we have V≈ –90 mV.  This negative potential
at the microelectrode tends to repel the 'excess' Cl ions.

There would not be this electrode offset potential if a salt bridge were used to connect the bath to
another pool containing the same solution as in the microelectrode.

2.  The liquid junction

How does electric current flow from the micropipette into a cell?  This question becomes interesting
because the concentrations of ions in the microelectrode are often quite different from the
concentrations in the bath or inside the cells we are measuring from.  For example, consider a pipette
containing 1 M KAcetate inserted into a cell.  In the absence of potential differences, both K+ and
acetate– will be diffusing into the cell; much smaller fluxes of K+ and Cl- will be diffusing in the
opposite direction.  Since K+ diffuses about twice as fast as acetate- (diffusion constants D = 2 x 10-5

vs. 1.1 x 10-5 cm2/sec) the main result will be a net positive current flow into the cell even with no
potential difference across the pipette-cell interface.  To have no current flow the bath must have a
positive potential (about  +15 mV) in order to equalize the rates of diffusion of cations and anions.
This liquid junction potential, defined to be the bath potential minus the potential inside the pipette,
can be estimated in various ways (all of which are approximate), using for example the Goldman-
Hodgkin-Katz equation or the Henderson equation.  Taking the GHK equation, and assuming that
the main diffusible ions inside the cell are K+ and Cl–, we obtain the liquid junction potential as

φLJ = 
kT
q  ln 

DK [K]e + DCl [Cl]cell
DK [K]cell + DAc [Ac]e

 . (5)

Differences in LJ potentials at a microelectrode can be measured by immersing the same electrode
into various solutions.  However, to do this measurement you must also know what the various
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solutions are also doing to the potential offset of the reference electrode!  See Neher, (1992)1 for a
pithy introduction to liquid junction effects and measurements.

A high concentration of KCl is ideal as a microelectrode solution if you want to avoid LJ
potentials.  This is because K+ and Cl– have almost identical diffusion constants, and if the
concentration in the pipette is high, the efflux of K+ and Cl– from the pipette will be much larger,
and will effectively swamp out, any influx of the ions that are outside.

ELECTRODE RESISTANCE

In order to pass a current I through a microelectrode, you have to apply a voltage V to force the ions
to move in the pipette.  The resistance is the ratio of the voltage applied across the pipette to the
current I that is elicited,

R = 
V
I .

The resistance of a cylinder of conducting substance like this

x

A

is given by

R = 
ρ l
A

where l is the length, A the area, and ρ is the restivity of the substance.  Now consider the resistance
of the conical interior of a microelectrode:

dx

r
r0

The resistivity of a slab of length dx is

dR = 
ρ dx

πr2
 .

Notice that the incremental resistance at the tip is much larger than up the shank where r is greater,
because of the 1/r2 dependence.  The total resistance is the integral of dR over all x values.  To do
this, first we must have a relationship between r and the x coordinate.  Let

r = kx

so that k represents the steepness of the taper of the pipette.  Then the total resistance R (letting the
cone be infinite in length, since it makes little difference to the resistance) is

1E. Neher, Correction for liquid junction potentials in patch clamp experiments.  Methods in Enzymology 207, 123-131, 1992.
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R = 
⌡
⌠

x0

∞
ρ

πr2 dx

or by the substitution dx = dr/k,

R = 
⌡
⌠

r0

∞
ρ

πr2k
 dr

which yields

R = 
ρ

πr0k . (6)

Notice that the resistance is inversely proportional to the radius r0 at the tip, and is also
inversely proportional to the steepness of the taper k.  Let us take some typical values for a patch
pipette.  For physiological salines ρ ≈ 100 ohm-cm, and k ≈ 0.2.  For a tip radius r0 = 0.5 µm (5 x 10–5

cm) one computes R ≈ 3 megohms, which is a typical value.  For pipettes with much smaller tips
(such as for microelectrodes that penetrate cells) the lower ρ values afforded by more concentrated
salt solutions (e.g. 3M KCl) help to keep the resistance from being too large.

CONTROLLING MEMBRANE POTENTIAL

Now let us consider the effect of injecting current through a microelectrode to change the membrane
potential of a cell.  We start with what I call the "fundamental equation of electrophysiology",

Iionic + C 
dE
dt  = 0

The amount of electrical charge deposited on the cell membrane is C, the cell capacitance, times E,
the membrane potential.  C dE/dt is then the rate of change of the stored charge; Iionic is the ionic
current through channels (or other pathways) through the membrane.  Clearly changes in the stored
charge must be accounted for by ionic currents through the membrane, and this equation is simply a
statement of the conservation of charge.

If a microelectrode injects current into the cell, the equation becomes

Iionic + C 
dE
dt  = Iinjected (7)

Note that this says that in the steady state (when dE/dt is zero) the outward ionic current through
the membrane is just equal to the current injected into the cell through the microelectrode.

We would like to solve this equation for E.  To do this we must know how Iionic and Iinjected
depend on E.  The membrane current Iionic is zero at the resting potential Er and depends on the
membrane conductance gm according to

Iionic = (E–Er) gm

Let V be the voltage applied to the microelectrode.  Then

Iinjected = 
V–E
Re



Microelectrodes 1-5

or,
Iinjected = (V–E) ge

Substituting these expressions into (7) one obtains

(E–Er) gm + C 
dE
dt   =  (V–E) ge

or, by rearranging,

(gm + ge) E + C 
dE
dt    =  gmEr + geV

or,

E + 
C

gm+ge
 
dE
dt    =  

 gmEr + geV
gm+ge

 . (8)

This can be written in a standard form,

E + τ 
dE
dt   = E∞,

where τ is the time constant of changes in E, and E∞ is the final value that E takes: it is the weighted
average of Er and V, weighted by the relative sizes of gm and ge.

As an example, consider trying to control the membrane potential of a Xenopus oocyte.  For
that cell gm = 10–6 siemens (i.e. the membrane resistance is about 1 megohm).  A typical electrode has

ge = 10–6 siemens also (1 MΩ resistance).  The membrane capacitance is about 0.2 x 10–6 farads (0.2
µF).  This results in E∞ halfway between Er and V, and τ = 0.1 seconds.  For example, if V were
suddenly changed fromEr to 0 mV the membrane potential would follow a time course like this:

time, ms

E

Er

0
100 200 300

Thus if you wanted to control the membrane potential by applying the commanded potential V to
the microelectrode, you would not be very successful: E would only follow half the magnitude of the
changes you impose, and will follow the changes very slowly, with a time constant of 100
milliseconds.  To get around these severe limitations one uses the voltage-clamp techniques that we
will consider in the next two lectures.


