
CMP 610b Lecture 8
F. Sigworth

Maximum-Likelihood fitting

One of the issues I want to address in this lecture is the fitting of distributions
dwell times.  We want to find the best curve to draw over a histogram, say a
histogram of open times.  We know how to do this pretty well, by eye.  But how do
we do it in an optimum way?  Before we tackle this problem, let's review the three
best-known distributions of random numbers.

1.  The binomial distribution.  Suppose you toss a coin that has a probability p of
landing heads.  (A fair coin would have p = 1/2.)  The probability of obtaining exactly
k heads out of N tries is

P(k; p, N) =
N

k

 
 
  

 
pk (1− p)N − k

This is the binomial distribution.

2.  The Gaussian distribution.  Suppose the number of tries N is very large.  The

expectation value for the number of heads k is µ=Np and the variance is σ2=Np(1-p).
The binomial distribution can be approximated by the Gaussian probability density
function (the probability that

P(k; µ,σ ) =
1

2πσ
e− k − µ( )2

/2 σ 2

.

3.  The Poisson distribution.  Suppose that N is very large, but p is very small, such

that Np is a fairly small number, which we will call λ.  Then a better approximation to
the binomial distribution is the Poisson probability,

P(k;λ) =
λk

k!
e− λ .

THE NUMBER OF EVENTS IN A HISTOGRAM BIN

The random number ni  of entries in a bin of a histogram can be thought of arising
from the binomial distribution.  From last time we said that the expectation value of
ni  is
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ni = N ′ F (ti) − ′ F (ti +1)[ ]

where N is the total number of events, and ′ F (ti )  is the probability that an event
exceeds the value ti  corresponding to the lower end of the ith bin.  Strictly speaking,
the variable ni  follows the binomial distribution; but since there are typically a lot of
bins in a histogram, and often not so many events in a single bin, the Poisson
distribution is a very good approximation.  The Gaussian distribution is not a good
approximation, especially in the case where there are only a few entries in a bin.  This
is especially true for bins that have one or no entries.  How do you fit a Gaussian in
these cases?  Instead, we will consider an entirely different approach to fitting the
experimental events, based on computing the likelihood.  Maximum-likelihood fitting
to histograms is described in the paper by Sigworth and Sine (1989).

THE LIKELIHOOD

When you gather some data (for example, a set of channel open times) you
typically want to find the best description of these data in the form of some sort of
model, perhaps a kinetic scheme.  The best way to approach this problem seems to be
to find the "most probable" model, that is the theory that represents the underlying
mechanism most likely to give rise to the data you observed.  That is, you would like
to be able to evaluate the conditional probability

Ptheory' = Prob{ theory | data } (1)

and find the theory that gives the highest probability.  Now this probability is very
difficult to evaluate.  A starting point is the probability

Pdata' = Prob{ data | theory }

This is not so hard to evaluate: based on your theory, you calculate the probability of
actually observing what you observed (we will see how to do this below).  By Bayes'
theorem we have

Prob{ theory | data } = 
Prob{ theory }
 Prob{ data }   Prob{ data | theory }. (2)

This means that we can in principle evaluate eqn. (1), if we somehow knew the
probability that we got our particular data set (as compared to any other data set) and
also how probable our theory is compared to all other theories.  No one knows really
how to evaluate the first of these, the probability of the data.  There might be some a
priori information, gotten from an independent source, which could be reflected in
Prob{theory}.  This could consist of rough values for parameters of the theory, in
which case Prob{theory} might be a product of broad Gaussian functions centered on
these estimates.  Or Prob{theory} might reflect a philosophical bias about what kinds
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of models are best (e.g. that we prefer simple models to complex ones).  Either way,
Prob{theory} can be incorporated as a prior probability term.  If there is no prior
probability function, one just guesses that Prob{theory}/Prob{data} is a constant, and
defines the likelihood of a theory simply as

Lik = k Prob{ data | theory } (3)

where k is an undetermined constant.

Computing the likelihood is done as follows.  Suppose we had a number of
measurements of channel open time which we call t1, t2, ... tn.  Suppose we have a
theory that these times come from a distribution with probability density

f(ti) = 
Prob{ ti lies in the interval (t, t+dt)}

dt

that, say, is exponential,

f(ti) = α e–αt. (4)

Then the probability of observing these data given this theory is something like

Prob{ data | theory } = f(t1) dt x  f(t2) dt x  ... x  f(tn) dt

which is a very infinitesimal number since it contains the infinitesimal factor (dt)n.
However, since we have an undetermined constant anyway, we just write

Lik = f(t1) f(t2) f(t3)...f(tn) (5)

i.e. the product of the pdf evaluated for each observed dwell time.  Even this number
can get to be very small, so it is common practice to evaluate the log likelihood,

L = ln( Lik ) = ∑
i=1

n
 ln f(ti) (6)

which is easier to handle because we are forming a sum rather than the product of
terms representing each measurement.  Our goal is to find the theory that gives the
greatest likelihood, so it is just as good to maximize L as to maximize Lik itself.

Returning to our example with the exponential probability density function
(4), we can evaluate the log likelihood directly:
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L = ∑
i=1

n
 ln(α) – αti .

Given that we think that the exponential pdf is the 'right' theory, all we have to do is
find the value of α that maximizes L.  This can be obtained anlytically in this case by
finding

∂L
∂α  =  

n
α  − ∑

i=1

n
 ti = 0 (7)

which works out to be α = 1/(average of the ti).

For more complicated theories the evaluation of L is not so easy, and typically
has to be done with a computer performing the sum in eqn.(6) by brute force.  Once L
is evaluated for one set of parameters of a theory, an automatic search routine can
vary the parameters to find a set that gives a maximum value.  What you want is the
global maximum value, but what a computer program finds may just as well turn out
to be only a local maximum value; so you must be careful.  See Colquhoun and
Sigworth (1995) for a more complete discussion of maximum-likelihood fitting.

LEAST SQUARES IS A SPECIAL CASE OF MAXIMUM LIKELIHOOD

You are probably more familiar with least-squares fitting of data.  For example,
standard plotting programs will perform some kinds of least-squares fits for you.
Least-squares is sometimes, but definitely not always, equivalent to maximum
likelihood.  We consider one case where they are equivalent.

Suppose you have some data measurements x1, x2, ... xn which, like samples of
current measured in a patch clamp, reflect a true underlying signal but with random
noise added to it.  Suppose our theory is that the sequence of data measurements
reflect a particular sequence s1, s2, ... sn of underlying signal samples.  Suppose also
that we know that the noise is Gaussian distributed.  That means that the probability
density function will be something like

f(xi) = 
1

2π σ
  exp – 





(xi-si)2

2σ2

and so on for x2, x3,... with k being a factor that depends on σ but not on x or y.  Now
notice what the log likelihood (eqn. 12) becomes:

L =− nln( 2πσ ) −
(x i − si)

2

2σ 2
i =1

n

∑ (8)
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The log likelihood is just a constant minus something proportional to the sum of the
squared deviations of the xi from the yi.  Maximizing L will be equivalent to
minimizing the squared deviations.  This is so precisely because we assumed a
Gaussian distribution for the noise.  If the random variations in the measured values
do not follow a Gaussian distribution, then least-squares will give you a result that is
not optimum in the sense of being the "most likely" one.

HIDDEN MARKOV MODELS

A particularly ambitious use of the maximum-likelihood technique is the so-
called Hidden Markov Model (HMM) analysis of single-channel data.  The idea is to
compute the probability of the data given the theory, in the case where the data
consist of the entire sequence of raw measurements of the membrane current, and the
theory is a Markov model (technically, a Hidden Markov model) for the channel
gating behavior.  A Hidden Markov model is a Markov process (i.e. the switching of a
system among discrete states) where the observations do not unambiguously show
which state the system is in at a given time.  This describes the situation of single-
channel recordings very well, where (1) noise sometimes precludes an unambiguous
determination of whether the channel is open or closed, and (2) there often are
multiple underlying kinetic states corresponding to the "channel closed" or "channel
open" conductance levels.

Some very powerful algorithms have been developed for computing and
maximizing the likelihood of an HMM.  For more than a decade, much work has been
done on HMMs for automatic speech recognition; for an introduction, see Rabiner
and Juang (1986).  Only recently have people noticed that HMM techniques are
applicable to ion channel analysis as well (Chung et al. 1990; Chung et al. 1991).  Here,
we will consider the Forward Algorithm for computing the likelihood.

Suppose we have a set of observations y1, y2 ,... yT  which are measurements of

the patch current at evenly spaced times, one observation per sample interval δt.  We
will compare it with a Markov model having n states.  Corresponding to each state
there is a channel current µi ; if for example state 1 is a closed state, then µ1 = 0.  The

background noise is taken to be Gaussian with variance σ2.  To describe the kinetics,
we define transition probabilities aij which is the set of probabilities of going from
state si to state sj in one sample interval.  (These are approximately related to the rate

constants kij by aij ≈ kijδt.)

On the basis of this model, we can define the probability of an observation yt
given that the channel is in state i as a Gaussian function (due to the background
noise),
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bi(yt ) =
1

2πσ
exp

(yt − µ i)
2

2σ 2

 
 
  

 
. (9)

The probability of a particular sequence of observations, given that the underlying
Markov process goes through the sequence of states 

    
si1

,s i2
,...siT

 is given by

    
P{y1, y2 ,...yT|si1

,s i2
,...siT

} = bi1
(y1)bi2

(y2)...b iT
(yT )

where pi1
 is the probability of starting in state i1 at the first time point.  We are

assuming that there is no correlation in the noise so that we can simply form the
product of the observations probabilities b.  Meanwhile, the probability of the state

sequence, given the model λ, is given by

    
P{si1

, si2
,...siT

|λ} = pi1
ai1i2

ai2 i3
...aiT − 1iT

.

The likelihood (i.e. the probability of the observations given λ) can therefore be
obtained by a sum over all possible sequences,

    

P{y1, y2 ,...yT|λ} = P{y1 , y2 ,...yT |si1
,si2

,...s iT
}P{si1

,si2
,...s iT

|λ}
i1 , i2 ,..iT

∑

= pi1
bi1

(y1)ai1i2
bi2

(y2)...aiT −1iT
biT

(yT)
i1, i2 ,..iT

∑
(10)

Computing this sum is very time consuming, because there are nT possible sequences!
If we try to analyze a brief stretch of say 1000 sample points this sum will be
impossible to evaluate.

A very elegant approach to evaluating the likelihood is instead to define the

quantity α,

    αt(i) = P(y1 , y2...yt and st = i | λ) (11)

where λ represents the model.  It can be seen that

α1(i) = pibi(y1) .

Meanwhile, all successive αi can be evaluated according to

αt ( j) = α t −1(i)aijb j(yt )
i =1

n

∑ (12)

The desired likelihood value is obtained finally as
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L = α T( i)
i =1

n

∑ ,

the whole process requiring something on the order of n2T operations, instead of nT.
This makes evaluation of the likelihood practical.

Shown below is a simulation that shows the promise of this sort of approach.
A signal from a two-state channel was simulated (a total of 20,000 sample points)
with various amounts of white noise added.  The likelihood was computed as a
function of the two transition probabilities, where the actual two-state scheme was

C O
aco=0.3

aoc=0.1

At the "low noise" level, where the noise standard deviation σw is half of the single-
channel amplitude, the maximum of the likelihood occurs at the correct values.

However, even at the extremely high noise level of σw = 1.5 the maximum is near the
correct values.  The dotted contour gives the 95% confidence interval for the
estimates, which is seen to enclose (or nearly enclose) the correct values (indicated by
a cross) in each contour plot.

σw=1.0

σw=1.5

σw=0.5
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From this one can see a general approach to analyzing single-channel data:
guess a model (i.e. pick the number of states, the transition probabilities and the
currents), and compute the likelihood from the stretch of data.  Then vary the
parameters of the model until the likelihood is a maximum.  This is then, the model
that gives the best description of the data.  There are two limitations that must be kept
in mind for this approach.  First, there is a danger that in finding the maximum you
have found only a "local maximum".  There may be a set of parameters quite different
from the ones you settled on that gives a higher likelihood.  This is a general problem
in all situations where there are many parameters.  Second, perhaps you picked the
wrong sort of model in the first place.  For example, suppose you picked a two-state
model to describe data from a three-state channel.  You won't know your error unless
you happen to try a three-state model; in that case you might see a greatly increased
likelihood with the n=3 model, but little further increase with n=4 or 5 models.

The simple algorithm described here has been extended to deal with various
practical issues that are encountered in analyzing actual patch-clamp data, including
nonwhite background noise, state-dependent noise, the effect of filtering on the data,
and baseline drift.  You can read all about it in the thesis by a Yale EE graduate
student (Venkataramanan, 1998).
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