Specialized Tools for Electrophysiology and Cell Biology Research

Clark Borosilicate Theta

Product Summary

The properties of borosilicate glass make it the most popular material among researchers for the fabrication of electrodes and micro-pipettes.

  • Easy to fill
  • Two channels in a single diameter
  • High quality borosilicate glass
  • Outside diameters in 1.5 and 2.0 mm
  • Economical

The low softening temperature of this glass combined with its mechanical strength, chemical resistance, high electrical resistivity, and ability to withstand thermal stress make these capillaries the most widely used in the world.

Theta wall Clark borosilicate capillaries are offered with septum dimensions of 0.17 mm and 0.22 mm.

Micropipettes and microelectrodes manufactured from Clark glass are used primarily in intracellular and extracellular research. The end user can manufacture their own microelectrodes and micropipettes using standard pipette pulling and microforge techniques.

OD
(mm)
ID
(mm)
Wall
Thickness
(mm)
Tolerance
(mm)
Length Qty/Pkg Model Order # Quick Add
to Order
1.5 1.17 0.17 ± 0.05 75 mm 100 TGC150-7.5 30-0116 Login
100 mm 100 TGC150-10 30-0114 Login
150 mm 100 TGC200-15 30-0115 Login
2.0 1.56 0.22 ± 0.10 75 mm 100 TGC200-7.5 30-0119 Login
100 mm 100 TGC200-10 30-0117 Login
150 mm 100 TGC200-15 30-0118 Login
Composition 80.9% SiO2, 12.9% B2O3,
4.4% Na2O, 1.8% Al2O3
Softening Temp 815 °C
Dielectric Constant 4.7
Septum dimensions 0.17 mm for 1.5 mm OD
0.22 mm for 2.0 mm OD
Tolerance OD ± 0.5 - 0.10 mm, depending on OD

 

OD
(mm)
ID
(mm)
Wall
Thickness
(mm)
Tolerance
(mm)
Length Qty/Pkg Model Order # Quick Add
to Order
1.5 1.17 0.17 ± 0.05 75 mm 100 TGC150-7.5 30-0116 Login
100 mm 100 TGC150-10 30-0114 Login
150 mm 100 TGC200-15 30-0115 Login
2.0 1.56 0.22 ± 0.10 75 mm 100 TGC200-7.5 30-0119 Login
100 mm 100 TGC200-10 30-0117 Login
150 mm 100 TGC200-15 30-0118 Login

 

Accessories Top Desciption

Composition 80.9% SiO2, 12.9% B2O3,
4.4% Na2O, 1.8% Al2O3
Softening Temp 815°C
Dielectric Const 4.7
Septum dimensions 0.17 and 0.22 mm
Tolerance
OD 1.5
± 0.05 mm
Tolerance
OD 2.0
± 0.1 mm

References

References

  1. Sodium azide dilates coronary arterioles via activation of inward rectifier K channels and Na -K -ATPase,
    W. Hein Erion Qamirani, Habib M. Razavi, Xin Wu, Michael J. Davis, Lih Kuo and Travis,
    Am J Physiol Heart Circ Physiol 290:1617-1623, 2006. First published Dec 3, 2005
  2. An Acute Effect of Neuregulin 1 to Suppress 7-Containing Nicotinic Acetylcholine Receptors in Hippocampal Interneurons,
    Qing Chang and Gerald D. Fischbach,
    The Journal of Neuroscience, November 1, 2006 " 26(44):11295.11303 " 11295
  3. Determination of Binding Site Residues Responsible for the Subunit Selectivity of Novel Marine-Derived Compounds on Kainate Receptors,
    James M. Sanders, Olli T. Pentika¨ inen, Luca Settimo, Ulla Pentika¨ inen, Muneo Shoji, Makoto Sasaki, Ryuichi Sakai, Mark S. Johnson, and Geoffrey T. Swanson,
    MOLECULAR PHARMACOLOGY Vol. 69, No. 6 2006
  4. Enhancement of Excitatory Synaptic Transmission in Spiny Neurons After Transient Forebrain Ischemia,
    Yuchun Zhang, Ping Deng, Yan Li and Zao C. Xu,
    J Neurophysiol 95:1537-1544, 2006
  5. Pattern-Specific Synaptic Mechanisms in a Multifunctional Network. I. Effects of Alterations in Synapse Strength,
    Steven P. Lieske and Jan-Marino Ramirez,
    J Neurophysiol 95:1323-1333, 2006
  6. Sodium Channel 2 Subunits Regulate Tetrodotoxin-Sensitive Sodium Channels in Small Dorsal Root Ganglion Neurons and Modulate the Response to Pain,
    Luis F. Lopez-Santiago, Marie Pertin, Xavier Morisod, Chunling Chen, Shuangsong Hong, John Wiley, Isabelle Decosterd, and Lori L. Isom,
    The Journal of Neuroscience, July 26, 2006 " 26(30):7984 .7994
  7. Store Calcium Mediates Cholinergic Effects on mIPSCs in the Rat Main Olfactory Bulb,
    Ambarish S. Ghatpande, Kartik Sivaraaman and Sukumar Vijayaraghavan,
    J Neurophysiol 95:1345-1355, 2006
  8. Methylphenidate Increases Cortical Excitability via Activation of Alpha-2 Noradrenergic Receptors,
    Glenn D Andrews and Antonieta Lavin,
    Neuropsychopharmacology (2006) 31, 594.601
  9. Phospholipase D2 Is Required for Efficient Endocytic Recycling of Transferrin Receptors,
    David Padron, Renee D. Tall, and Michael G. Roth,
    Molecular Biology of the Cell Vol. 17, 2581.2591, June 2006
  10. Impaired Firing and Cell-Specific Compensation in Neurons Lacking Nav1.6 Sodium Channels,
    Audra Van Wart and Gary Matthews,
    The Journal of Neuroscience, July 5, 2006 " 26(27):7172.7180
  11. Evidence for a Multivalent Interaction of Symmetrical, N-Linked, Lidocaine Dimers with Voltage-Gated Na Channels,
    J. A. M. Smith, S. M. Amagasu, J. Hembrador, S. Axt, R. Chang, T. Church, C. Gee, J. R. Jacobsen, T. Jenkins, E. Kaufman, N. Mai, and R. G. Vickery,
    Mol Pharmacol 69:921.931, 2006
  12. Functional Roles of Charged Amino Acid Residues on the Wall of the Cytoplasmic Pore of Kir2.1,
    Yuichiro Fujiwara1 and Yoshihiro Kubo1,2,3,
    The Journal of General Physiology, 2006 Volume 127, Number 4, 401-419
  13. Protons Trap NR1/NR2B NMDA Receptors in a Nonconducting State,
    Tue G. Banke, Shashank M. Dravid, and Stephen F. Traynelis,
    The Journal of Neuroscience, January 5, 2005, 25(1):42-51
  14. Suppression of Ih Contributes to Propofol-Induced Inhibition of Mouse Cortical Pyramidal Neurons,
    Xiangdong Chen, Shaofang Shu and Douglas A. Bayliss,
    J Neurophysiol 94: 3872-3883, 2005
  15. Prostaglandin E2 potentiates a TTX-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurones,
    Kevin Kwong and Lu-Yuan Lee,
    J of Physiology 564.2 (2005) pp.437-450
  16. Suppression of Ih Contributes to Propofol-Induced Inhibition of Mouse Cortical Pyramidal Neurons,
    Xiangdong Chen, Shaofang Shu and Douglas A. Bayliss,
    JN 94:3872-3883, 2005.
  17. Alterations of potassium currents in ischemia-vulnerable and ischemia-resistant neurons in the hippocampus after ischemia,
    Bende Zou, Yan Li, Ping Deng, Zao C. Xu,
    Brain Research 1033 (2005) 78.89
  18. Sequential Phosphorylation Mediates Receptor- and Kinase-induced Inhibition of TREK-1 Background Potassium Channels,
    Janet Murbartián, Qiubo Lei, Julianne J. Sando, and Douglas A. Bayliss,
    J. Biol. Chem., Vol. 280, Issue 34, 30175-30184, August 26, 2005
  19. Increase of Delayed Rectifier Potassium Currents In Large Aspiny Neurons In The Neostriatum Following Transient Forebrain Ischemia,
    P. Deng, Z.-P. Pang, Y. Zhang And Z. C. Xu,
    Neuroscience 131 (2005) 135.146
  20. Ionic Mechanisms Underlying Autonomous Action Potential Generation in the Somata and Dendrites of GABAergic Substantia Nigra Pars Reticulata Neurons In Vitro,
    Jeremy F. Atherton and Mark D. Bevan,
    The Journal of Neuroscience, September 7, 2005, 25(36):8272-8281
  21. The Wake-Promoting Peptide Orexin-B Inhibits Glutamatergic Transmission to Dorsal Raphe Nucleus Serotonin Neurons through Retrograde Endocannabinoid Signaling,
    Samir Haj-Dahmane and Roh-Yu Shen,
    The Journal of Neuroscience, January 26, 2005 " 25(4):896 .905
  22. High-Concentration Rapid Transients of Glutamate Mediate Neural-Glial Communication via Ectopic Release,
    Ko Matsui, Craig E. Jahr, and Maria E. Rubio,
    The Journal of Neuroscience, August 17, 2005, 25(33):7538-7547
  23. Inhibition of ROMK potassium channel by syntaxin 1A,
    Tie-Jun Sun, Wei-Zhong Zeng and Chou-Long Huang,
    Am J Physiol Renal Physiol 288:284-289, 2005
  24. Fictive Swimming Motor Patterns in Wild Type and Mutant Larval Zebrafish,
    Mark A. Masino and Joseph R. Fetcho,
    J Neurophysiol 93:3177-3188, 2005
  25. Role of aspartate 298 in mouse 5-HT3A receptor gating and modulation by extracellular Ca2+,
    Xiang-Qun Hu, David M. Lovinger,
    The Journal of Physiology Volume 568 Issue 2 Page 381-396, October 2005
  26. High-Concentration Rapid Transients of Glutamate Mediate Neural-Glial Communication via Ectopic Release,
    Ko Matsui, Craig E. Jahr, and Maria E. Rubio,
    The Journal of Neuroscience, August 17, 2005, 25(33):7538-7547

Pricing Top Description

Lead time for Clark Glass is commonly 4 to 6 weeks.

Order No. Model No. Product Description USA Price Order
1.5 mm OD - wall thickness 0.17 mm
30-0116 TGC150-7.5 Clark theta glass, 1.5 mm x 7.5 cm (OD x L) Login Login
30-0114 TGC150-10 Clark theta glass, 1.5 mm x 10 cm (OD x L) Login Login
30-0115 TGC150-15 Clark theta glass, 1.5 mm x 15 cm (OD x L) Login Login
2.0 mm OD - wall thickness 0.22 mm
30-0119 TGC200-7.5 Clark theta glass, 2.0 mm x 7.5 cm (OD x L) Login Login
30-0117 TGC200-10 Clark theta glass, 2.0 mm x 10 cm (OD x L) Login Login
30-0118 TGC200-15 Clark theta glass, 2.0 mm x 15 cm (OD x L) Login Login

Need support?

Want to know more about our quality products or need assistance in technical support?

TALK TO OUR EXPERTS

NEWSLETTER

For the most up-to-date information on Warner Instruments news and technologies, sign-up for our newsletter.