
CMP 610b Lecture 7
F. Sigworth

Matrix formulation of kinetic schemes

In lecture 6 we considered the interpretation of molecular events as a Markov process, and looked at
the statistics of open times for a simple two-state scheme.  In this lecture we will generalize this sort
of analysis to multistate kinetic schemes, and introduce some mathematical concepts that are useful
in handling the complexities that arise.

THE OPEN TIME WITH MULTIPLE STATES

Suppose we have a channel that can close in two different ways, modelled as

C O
α

β
C

δ

γ

1 3

How do we compute the open time distribution in this case?  It is helpful to recall our definition of a
rate constant, as the probability per unit time of making a transition.  The equation for F'(t), the open-
time 'survivor function' is

dF'(t)
dt  = – 

Prob{O at t and O→C1 or O→C3 during (t, t+dt)}
dt

meanwhile we have

β = 
Prob{ O→C1 during (t, t+δt) | O at time t }

δt

γ = 
Prob{ O→C3 during (t, t+δt) | O at time t }

δt

so the probability of making a transition from O to either of the closed states in an infinitesimal time
dt is (β + γ)  times the probability of being in O at time t,  and the equation for F' becomes

dF'(t)
dt  = –(β + γ) F'(t)

That is, the rate of leaving the open state is simply the sum of the rates leading away from that state.
The solution to this equation is a single exponential function but with a faster decay than in the case
with one closed state.  Here is an interesting phenomenon: there is no way to distinguish dwell times
in O that terminate in C1 from those that end by a transition to C3.  Even if β is much larger than γ,
the openings that are terminated by a transition to C1 will be no shorter.

TIME COURSE OF THE STATE PROBABILITIES
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Now we will consider another sort of problem.  Supposing that the channel is in state C1 at time
zero, what will be the probability that it is in state O at a given time t?  To make the notation easier,
let us number the states and rename the rate constants in this way:

C O
k12

k21
C

k32

k23

1 32
(1)

Now we can write an equation for the probability p1(t) of being in the first state,

dp1
dt   =  –p1 k12 + p2 k21.

Here what we are saying is that the occupancy of state 1 decreases as transitions 1→2 occur, and
increases as transitions from 2→1 occur.  Likewise we can write two more equations for the other two
states,

dp2
dt   =  p1 k12 –p2 (k21+k23) + p3 k32

dp3
dt   =  p2 k23 – p3 k32

We can solve these equations to obtain the three time courses p1(t), p2(t) and p3(t).  A shorthand way
of writing these equations uses vector and matrix notation.  For example these equations become

d( )p1 p2 p3

dt   =  ( )p1 p2 p3  x 







–k12–k13 k12 k13

k21 –k21–k23 k23

k31 k32 –k31–k32

Here I have included two more rates, k13 and k31, for generality; in the case of our scheme (1) these
are zero.  This matrix equation can be rewritten in the compact form

dp(t)
dt  = p(t) Q (2)

where p(t) is the probability vector and Q is the transition rate matrix.  The vector p contains the
probability of being in each state as a function of time; note that because of the way we have set up
the problem that Q does not depend on time.  This is a characteristic of a "time homogeneous
Markov process", which is the sort of process we will be talking about.  The elements of Q are called
q11, q12, and so on.  They are specified by

qij = 



 kij, i ≠ j

– ∑
m≠i

kim, i = j. (3)

One might naively write the traditional solution to eqn. (2) as

p(t) = p(0) eQt
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which, as it turns out, makes mathematical sense and is the way one would solve the equation on a
computer, for example.  More about this later.

INTERESTING THINGS YOU CAN DO WITH THE PROBABILITY VECTOR

Channel current.  One thing you would want to do is to find out the probability the channel is in the
open state, state 2.  This is just given by p2.  If you wanted to be fancy you could obtain p2 by
constructing the vector u = ( 0  1  0 ) and forming the vector inner product

p.u = ∑
i=1

3
 pi ui 

which in this case just yields p2.  This fancy approach works nicely if you have multiple open states,
perhaps with different conductances.  Then you can construct the u vector with the different current
levels and the product will give you the average current.

Charge transfer.  There are several situations in which transitions among states result in the transfer
of charge across a cell membrane.  One case are the gating currents or conformation currents due to
rearrangement of charged entities in a membrane protein.  Another case is in computing the current
due to a transporter.  In either case if you have a kinetic scheme for the steps involved, you can
calculate the current that flows.

The basic idea is that with each state can be associated a charge ci, so that the total charge
movement can be written

c = ci pi
i

∑ .

What is measured experimentally is the current J = d c / dt , that is the time derivative of the charge.
Making use of the fact that dp / dt = pQ , it is easy to see that

J(t) = pi(t)qijc j
ij
∑

= pQ ⋅ c
(4)

where the sums are taken over all states.

Dwell times.  Suppose we want to compute the probability density function of closed times, for
comparison with a histogram of closed times obtained from a single-channel recording.  A closed
time is the dwell time between leaving an open state of the channel and returning to an open state.
Suppose in our three-state model a closed time starts by a transition 2→1.  Then the closed time will
be the time before the channel returns to state 2.  The probability distribution (survivor function) of
these closed times F'(t) will equal the probability p1(t) in the scheme

C O
k12

1 2

since in this scheme, once the channel opens nothing further happens; the closed time is terminated.
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In general, one can compute the closed time distribution function as the dwell time in closed
states of a scheme in which all of the rates from open to closed states are set to zero.  You prepare the
system in each closed state and then see how the probability of remaining closed evolves with time.
You then weight each of these survivor functions by the probability of starting a closed interval in
each closed state, and sum them.  In matrix notation, the distribution function of closed times is
given by

F'c(t) = πc eQ't .u (5)

where πc is a vector of probabilities whose ith element is the probability of landing in state i when the
channel closes (assuming that state i is a closed state; otherwise the element is zero).  Q' is the same
as Q except that all elements qij are zero in the cases that i is an open state and j is a closed state.  The
vector u is a row vector of ones, so that the dot product has the effect of summing all the elements of
the product of the first two terms in the equation.  Finally, by taking the time derivative of F'c  you
obtain the probability density function fc which you can superimpose over an experimental closed-
time distribution:

    

fc = − d

dt
′ F c

= π ce
′ Q t ′ Q u

By the same process, just reversing the roles of closed and open states, one can obtain the
open time distribution and probability density functions as well.

CHARACTERISTIC RELAXATIONS AND EIGENVECTORS

Now let us take our three-state scheme and give it some specific rate constants in units of s-1:

C O
1

1
C

100

100

1 32

This might represent a channel with a very slow opening step from the closed state C1, but with a
rapid blocking step.  What will be the steady-state probability vector?  At steady state the occupancy
of each state is equally probable, so

p∞ = ( 
1

3
   

1

3
   

1

3
 )

If we were to somehow prepare a population of channels with this distribution among the states,
then there would be no change with time of the distribution.  (Of course, individual channels will be
flipping from one state to another, but the expectation value of the occupancy of each state will
remain constant.)

Now suppose we are at steady state but then perturb the distribution, at time zero, by an
amount p':

p(0) = p∞ + p'
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The perturbation is such that we increase the occupancy of state 1 but decrease the occupancies of
states 2 and 3,

p' =  δ ( 1.0    –0.5   –0.5 ) (7)

where δ is an arbitrary small factor that sets the size of the perturbation.  You can see what would
happen after the perturbation: the equilibrium between states 2 and 3 won't be disturbed, but a slow
relaxation with a rate λ' ≈ –1.5 s–1 (time constant of about 0.7 s) will occur between them and state 1.
In fact you could guess that the time course of the occupancy probabilities will be approximately

p(t) ≈ p∞ + p' eλ't,

that is, the probabilities will relax with a slow time constant to the equilibrium value p(∞).  Notice
that the exponential is decaying in time because λ' is negative.

Consider another kind of perturbation,

p" =  δ ( 0.0    1.0   –1.0 ). (8)

Here we are changing the relative occupancies of states 2 and 3.  We expect a very rapid
equilibration, which will occur with a rate λ" ≈ –200s–1 (a time constant of about 5 ms) and follow

p(t) ≈ p∞ + p" eλ"t.

Decomposition into characteristic modes.  What we have picked in eqns. (7) and (8) are characteristic
probability vectors that correspond to special relaxation modes of the kinetic scheme.  We can use
these to obtain the time course of the probability vector given an arbitrary starting configuration if
we can decompose the starting probabilities into these modes.  The problem is, given a starting
vector p(0), we would like to write it in the form

p(0) = p∞ + a1 p' + a2 p" (9)

because if we are successful, we could treat this like the superposition of perturbations and say that
the solution to eqn. (2) will then be approximately

p(t) ≈ p∞ + a1 p' eλ't + a2 p" eλ"t. (10)

As an example, suppose that the starting vector is p(0) = ( 1   0   0 ).  That is, we start in state 1.  The
coefficients that satisfy eqn. (9) are

a1 = 0.667
a2 = 0

(try it for yourself!).  On the other hand, if we started with p(0) = (0   0   1) then the coefficients would
be

a1 = –0.333
a2 = –0.5

and now, armed with these coefficients, we can obtain an approximate solution to the time course of
the probability in each state.
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Characteristic values and vectors.  What we have introduced here in disguise are the characteristic
values and characteristic vectors of the matrix Q.  The values λ' and λ" are called eigenvalues of the
matrix, and the vectors p' and p" are eigenvectors, as is p∞.  The elements of p' and p" given here are
approximate; they can be found to high precision using standard computer algorithms.  Thus for any
Q that represents a reasonable kinetic scheme, a computer can find for you the eigenvalues and the
elements of each eigenvector.  There is also a straightforward way to perform the decomposition of
an arbitrary vector p into the eigenvectors as in eqn. (9).  Thus we can solve for the time course of the
probabilities as in eqn. (10) in this way.

I used a program to find the eigenvalues and eigenvectors for our scheme.  In case you're
interested, the exact values are

λ∞ = 0
p∞ = ( 0.333  0.333  0.333 )

λ' = –1.496
p' = ( 1.0   –0.495   –0.505 )

λ" = –200.5
p" = (–.005   1.005   –1.0 )

Where our guess for the steady-state vector p∞ was correct in the first place, and it corresponds to
the eigenvalue of zero.

THE MATRIX EXPONENTIAL

Let us return to the equation for the time course of the probabilities,

dp(t)
dt  = p(t) Q (2)

Now let v be an eigenvector of the matrix Q.  The mathematical definition of an eigenvector (here I
use "left" eigenvectors) is that it satisfies

vQ = λv

where λ is the eigenvalue associated with v.  Now notice what happens if we happen to choose

p(0) = a v

i.e. p starts out being a vector proportional to v.  Then it can be shown that a solution to eqn. (3) is

p(t) = a eλt v.

This is exactly the phenomenon we saw above, when we perturbed our system in particular ways
corresponding to particular eigenvectors.  Our final conclusion was, if we were to express the initial
probability vector as an appropriate weighted sum of eigenvectors,

p(0) = ∑
i=1

n
 ai vi, (11)
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Then the solution to equation (3) in this general case will be

p(t) =  ∑
i=1

n
 ai eλit vi. (12)

where the λi are the eigenvalues corresponding to the eigenvectors vi.

How do we compute the coefficients ai?  One way of looking at the problem is to construct a
matrix V whose rows are the eigenvectors vi.  Then the ai are components of the vector a that
satisfies

a V = p(0)

which has the solution

a = p(0) V-1 (13)

where V-1 is the inverse of the matrix V.

A convenient way to use these results is to rewrite Q as its so-called spectral expansion,

Q =  ∑
i=1

n
 λi Ai

where the matrices Ai are derived from V and V-1.  (Specifically, they are given by

Ai=V-1DiV (14)

with Di being a matrix of all zeroes except for dii, which is equal to 1.)*  With this, the solution to our
problem can be written as

p(t) = p(0) eQt (15)

with eQt  given by

eQt =  ∑
i=1

n
 eλit  Ai

The matrix exponential is therefore equivalent to decomposing a vector into a weighted sum of
eigenvectors (by multiplication with V-1), then including each characteristic exponential decay, and
finally reconstructing the original vector by multiplying by the matrix of eigenvectors V.  We can

* Our notation here is nonstandard, because we have used v to be a "left eigenvector", a row vector, and V to be a matrix
of these.  The usual situation is to use column vectors ("right eigenvectors").  Thus for example in Matlab one writes

[U,D] = Eig(Q)

which delivers a matrix of eigenvectors U which is equal to our V–1.  Thus by the normal convention, eqn. (14) becomes

Ai=UDiU-1.
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abstract the decomposition and reconstruction by using a set of matrices Ai in the spectral expansion
of Q.

As an example, suppose we want to find the mean time course of the current I(t) through a
channel that follows a kinetic scheme represented by Q.  Let u be a vector of the channel current
corresponding to each state of the scheme.  Then

I(t)=  ∑
i=1

n
 eλit  p(0)Aiu

 =∑
i=1

n
 bi eλit  , (16)

and is seen to be a sum of exponential functions of time.

Now you should be able to understand (more or less) some parts of computer programs that
make use of these ideas.  The following are two procedures from our module "MatCurrents" that
compute the expectation value of current through a channel.  This module is used in our programs
for fitting the time courses of ionic currents.  The procedures use the matrix Q, the initial state vector
P0 and an array Currents which gives the amount of current flowing through the channel for each
state.  The result of the first procedure is an array (Ampl) of amplitudes (the bi of eqn. 15) and an
array (Lambda) of rates for each exponential component that makes up the result.  This procedure
makes use of other procedures in a module MatrixD that compute the spectral expansion and
perform matrix and vector multiplications.

PROCEDURE ComputeRelaxation( Q         : LongMatrixPointer;
                             P0        : LongVectorPointer;
                             NumStates : INTEGER;
                             Currents  : LongVectorPointer;
                             Ampl, Lambda : LongVectorPointer );
  (* Compute the amplitudes Ampl corresponding to the eigenvalues Lambda
     for the mean channel current.  P0 is the vector of
     probabilities at time 0, and Currents is an array giving the channel current
     corresponding to each state. *)
VAR
     i, j      : INTEGER;
     ok        : BOOLEAN;
     A         : MatArrayPointer;
     MatSize   : LONGINT;
BEGIN
   (* we compute Ampl[i] = P0 * A[i] * Currents,
      where Currents is the vector of currents.
   *)
  ok := MatrixD.SpectralExpansion(Q, NumStates, Lambda, A);
  FOR i := 0 TO NumStates-1 DO
     (*  First, compute P = P0 * A[i]   *)
    MatrixD.LeftMul( P0, MatArrayIndex( A, i ), P, NumStates, NumStates );
    Ampl^[i] := MatrixD.InnerProduct( P, Currents, NumStates );
  END; (* FOR *)

END ComputeRelaxation;

Now to convert the result of this procedure to a time course that can be plotted, we call another
procedure which simply computes the sum of the exponential functions and places it into an array
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called Data:
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PROCEDURE ComputeTimeCourse( NumStates      : INTEGER;
                             Ampl, Lambda   : LongVectorPointer;
                             SampleInterval : REAL;
                             NumPoints      : INTEGER;
                             VAR Data       : ARRAY OF REAL );
VAR
  i,j : INTEGER;
  y   : LONGREAL;
  A, dp : LongVectorType;

BEGIN
  A := Ampl^;  (* Copy the amplitudes *)
  FOR j := 0 TO NumStates-1 DO
    dp[j] := ETOX( Lambda^[j] * LONG(SampleInterval) );
  END;
  FOR i := 0 TO NumPoints-1 DO
    y := 0.0;
    FOR j := 0 TO NumStates-1 DO
      y := y + A[j];
      A[j] := A[j] * dp[j];
    END;
    Data[i] := SHORT(y);
  END;
END ComputeTimeCourse;
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